FM velocity selectivity in the inferior colliculus is inherited from velocity-selective inputs and enhanced by spike threshold.
نویسندگان
چکیده
Frequency modulation (FM) is computed from the temporal sequence of activated auditory nerve fibers representing different frequencies. Most studies in the inferior colliculus (IC) have inferred from extracellular recordings that the precise timing of nonselective inputs creates selectivity for FM direction and velocity (Andoni S, Li N, Pollak GD. J Neurosci 27: 4882-4893, 2007; Fuzessery ZM, Richardson MD, Coburn MS. J Neurophysiol 96: 1320-1336, 2006; Gordon M, O'Neill WE. Hear Res 122: 97-108, 1998). We recently reported that two additional mechanisms were more important than input timing for directional selectivity in some IC cells: spike threshold and inputs that were already selective (Gittelman JX, Li N, Pollak GD. J Neurosci 29: 13030-13041, 2009). Here, we show that these same mechanisms, selective inputs and spike threshold, underlie selectivity for FM velocity and intensity. From whole cell recordings in awake bats, we recorded spikes and postsynaptic potentials (PSPs) evoked by downward and upward FMs that swept identical frequencies at different velocities and intensities. To determine the synaptic mechanisms underlying PSP selectivity (relative PSP height), we derived sweep-evoked synaptic conductances. Changing FM velocity or intensity changed conductance timing and size. Modeling indicated that excitatory conductance size contributed more to PSP selectivity than conductance timing, indicating that the number of afferent spikes carried more FM information to the IC than precise spike timing. However, excitation alone produced mostly suprathreshold PSPs. Inhibition reduced absolute PSP heights, without necessarily altering PSP selectivity, thereby rendering some PSPs subthreshold. Spike threshold then sharpened selectivity in the spikes by rectifying the smaller PSPs. This indicates the importance of spike threshold, and that inhibition enhances selectivity via a different mechanism than previously proposed.
منابع مشابه
Mechanisms underlying directional selectivity for frequency-modulated sweeps in the inferior colliculus revealed by in vivo whole-cell recordings.
Auditory neurons in the inferior colliculus (IC) show remarkable selectively in that they can distinguish between complex sounds that have identical spectral energy but different temporal structure, such as frequency modulations (FMs) that sweep either upward or downward. Extracellular recordings show that blocking inhibition locally reduces or eliminates response selectivity, suggesting that s...
متن کاملThe dominance of inhibition in the inferior colliculus.
Almost all of the processing that occurs in the various lower auditory nuclei converges upon a common target in the central nucleus of the inferior colliculus (ICc) thus making the ICc the nexus of the auditory system. A variety of new response properties are formed in the ICc through the interactions among the excitatory and inhibitory inputs that converge upon it. Here we review studies that ...
متن کاملFacilitatory mechanisms shape selectivity for the rate and direction of FM sweeps in the inferior colliculus of the pallid bat.
The inferior colliculus (IC) of the pallid bat has a large percentage of neurons that respond selectively to the rate and direction of the bat's echolocation pulse, a downward FM sweep. Three underlying mechanisms have been previously described. Here we describe a fourth mechanism, facilitation, that shapes selectivity for both sweep rate and direction. The neurons studied are termed FM special...
متن کاملIt's about time: how input timing is used and not used to create emergent properties in the auditory system.
The hypothesis for directional selectivity of frequency modulations (FMs) invokes a mechanism with an honored tradition in sensory neurobiology, the relative timing of excitation and inhibition. The proposal is that the timing disparity is created by asymmetrical locations of excitatory tuning and inhibitory sidebands. Thus, cells in which the inhibitory sidebands are tuned to frequencies lower...
متن کاملInhibition shapes response selectivity in the inferior colliculus by gain modulation
Pharmacological block of inhibition is often used to determine if inhibition contributes to spike selectivity, in which a preferred stimulus evokes more spikes than a null stimulus. When inhibitory block reduces spike selectivity, a common interpretation is that differences between the preferred- and null-evoked inhibitions created the selectivity from less-selective excitatory inputs. In model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 106 5 شماره
صفحات -
تاریخ انتشار 2011